59 research outputs found

    Functional dynamics of the folded ankyrin repeats of I kappa B alpha revealed by nuclear magnetic resonance.

    Get PDF
    Inhibition of nuclear factor kappaB (NF-kappaB) is mainly accomplished by IkappaB alpha, which consists of a signal response sequence at the N-terminus, a six-ankyrin repeat domain (ARD) that binds NF-kappaB, and a C-terminal PEST sequence. Previous studies with the ARD revealed that the fifth and sixth repeats are only partially folded in the absence of NF-kappaB. Here we report NMR studies of a truncated version of IkappaB alpha, containing only the first four ankyrin repeats, IkappaB alpha(67-206). This four-repeat segment is well-structured in the free state, enabling full resonance assignments to be made. H-D exchange, backbone dynamics, and residual dipolar coupling (RDC) experiments reveal regions of flexibility. In addition, regions consistent with the presence of micro- to millisecond motions occur periodically throughout the repeat structure. Comparison of the RDCs with the crystal structure gave only moderate agreement, but an ensemble of structures generated by accelerated molecular dynamics gave much better agreement with the measured RDCs. The regions showing flexibility correspond to those implicated in entropic compensation for the loss of flexibility in ankyrin repeats 5 and 6 upon binding to NF-kappaB. The regions showing micro- to millisecond motions in the free protein are the ends of the beta-hairpins that directly interact with NF-kappaB in the complex

    The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure

    Get PDF
    AbstractWe have employed NMR to investigate the structure of SARS coronavirus nucleocapsid protein dimer. We found that the secondary structure of the dimerization domain consists of five α helices and a β-hairpin. The dimer interface consists of a continuous four-stranded β-sheet superposed by two long α helices, reminiscent of that found in the nucleocapsid protein of porcine respiratory and reproductive syndrome virus. Extensive hydrogen bond formation between the two hairpins and hydrophobic interactions between the β-sheet and the α helices render the interface highly stable. Sequence alignment suggests that other coronavirus may share the same structural topology

    Understanding the Biomineralization Role of Magnetite-Interacting Components (MICs) From Magnetotactic Bacteria

    Get PDF
    Biomineralization is a process that takes place in all domains of life and which usually helps organisms to harden soft tissues by creating inorganic structures that facilitate their biological functions. It was shown that biominerals are under tight biological control via proteins that are involved in nucleation initiation and/or which act as structural skeletons. Magnetotactic bacteria (MTB) use iron biomineralization to create nano-magnetic particles in a specialized organelle, the magnetosome, to align to the geomagnetic field. A specific set of magnetite-associated proteins (MAPs) is involved in regulating magnetite nucleation, size, and shape. These MAPs are all predicted to contain specific 17–22 residue-long sequences involved in magnetite formation. To understand the mechanism of magnetite formation, we focused on three different MAPs, MamC, Mms6 and Mms7, and studied the predicted iron-binding sequences. Using nuclear magnetic resonance (NMR), we differentiated the recognition mode of each MAP based on ion specificity, affinity, and binding residues. The significance of critical residues in each peptide was evaluated by mutation followed by an iron co-precipitation assay. Among the peptides, MamC showed weak ion binding but created the most significant effect in enhancing magnetite particle size, indicating the potency in controlling magnetite particle shape and size. Alternatively, Mms6 and Mms7 had strong binding affinities but less effect in modulating magnetite particle size, representing their major role potentially in initiating nucleation by increasing local metal concentration. Overall, our results explain how different MAPs affect magnetite synthesis, interact with Fe2+ ions and which residues are important for the MAPs functions

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain: A new fold with an additional C-terminal helix

    No full text
    The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1464-560), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1464-560 binds to a 13-mer DNA duplex containing a single repeat of an A. thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a KDw10K6–10K7 M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1464-560 is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1464-560 induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs

    NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator.

    No full text
    The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation

    CheShift-2 resolves a local inconsistency between two X-ray crystal structures

    No full text
    Since chemical shifts provide important and relatively accessible information about protein structure in solution, a Web server, CheShift-2, was developed for structure interrogation, based on a quantum mechanics database of (13)C( α ) chemical shifts. We report the application of CheShift-2 to a local inconsistency between two X-ray crystal structures (PDB IDs 1IKN and 1NFI) of the complex between the p65/p50 heterodimer of NFκB and its inhibitor IκBα. The availability of NMR resonance assignments that included the region of the inconsistency provided an opportunity for independent validation of the CheShift-2 server. Application of the server showed that the (13)C( α ) chemical shifts measured for the Gly270-Pro281 sequence close to the C-terminus of IκBα were unequivocally consistent with the backbone structure modeled in the 1IKN structure, and were inconsistent with the 1NFI structure. Previous NOE measurements had demonstrated that the position of a tryptophan ring in the region immediately N-terminal in this region was not consistent with either structure. Subsequent recalculation of the local structure in this region, based on the electron density of the deposited structure factors for 1IKN, confirmed that the local backbone structure was best modeled by 1IKN, but that the rotamer of Trp258 is consistent with the 1NFI structure, including the presence of a hydrogen bond between the ring NεH of Trp258 and the backbone carbonyl group of Gln278. The consensus between all of these measures suggests that the CheShift-2 server operates well under circumstances in which backbone chemical shifts are available but where local plasticity may render X-ray structural data ambiguous
    corecore